Treeable equivalence relations
نویسنده
چکیده
There are continuum many ≤B-incomparable equivalence relations induced by a free, Borel action of a countable non-abelian free group – and hence, there are 20 many treeable countable Borel equivalence relations which are incomparable in the ordering of Borel reducibility
منابع مشابه
Sofic equivalence relations
We introduce the notion of sofic measurable equivalence relations. Using them we prove that Connes’ Embedding Conjecture as well as the Measurable Determinant Conjecture of Lück, Sauer and Wegner hold for treeable equivalence relations.
متن کاملEssential countability of treeable equivalence relations
We establish a dichotomy theorem characterizing the circumstances under which a treeable Borel equivalence relation E is essentially countable. Under additional topological assumptions on the treeing, we in fact show that E is essentially countable if and only if there is no continuous embedding of E1 into E. Our techniques also yield the first classical proof of the analogous result for hypers...
متن کاملA Converse to Dye’s Theorem
Every non-amenable countable group induces orbit inequivalent ergodic equivalence relations on standard Borel probability spaces. Not every free, ergodic, measure preserving action of F2 on a standard Borel probability space is orbit equivalent to an action of a countable group on an inverse limit of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation which is not univ...
متن کاملPolish Groupoids and Functorial Complexity
We introduce and study the notion of functorial Borel complexity for Polish groupoids. Such a notion aims at measuring the complexity of classifying the objects of a category in a constructive and functorial way. In the particular case of principal groupoids such a notion coincide with the usual Borel complexity of equivalence relations. Our main result is that on one hand for Polish groupoids ...
متن کاملCountable Borel equivalence relations, Borel reducibility, and orbit equivalence
ing from the proof given above for Gaboriau-Popa we obtain theorems such as: Theorem 2.10 Let (X, d) be a complete, separable metric space equipped with an atomless Borel probability measure μ. Suppose Γ acts ergodically by measure preserving transformations on (X,μ) and the action on (X, d) is expansive. Let (Et)0<t<1 be a collection of distinct countable Borel equivalence relations on X with:...
متن کامل